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Abstract

We construct two HMMs to model the stock returns for every 10-day
period. Our first model uses the Baum-Welch algorithm for inference
about volatility, which regards volatility as hidden states and uses a mean
zero Gaussian distribution as the emission probability for the stock re-
turns. Our second model uses a spectral algorithm to perform stock re-
turns forecasting. We analyze the tradeoffs of these two implementations
as well.

1 Introduction

Hidden Markov models (HMMs) are known for their applications to speech
processing and pattern recognition. They are attractive models for discrete time
series analysis because of their simple structures. It is therefore not surprising
that there has been research on the applications of HMMs to finance.

Hassan and Nath (2005) use HMM to forecast the price of airline stocks. The
goal is to predict the closing price on the next day based on the opening price,
the closing price, the highest price and the lowest price today. The performance
of the HMM is similar to that of artificial neural networks (ANN).

O et al. (2004) propose a three-level hierarchical HMM to model the dynam-
ics of the stock prices. The first level consists of the hidden states that describe
the trend of the stocks: strong bear, weak bear, random walk, weak bull and
strong bull. The second level consists of the hidden states responsible for the
components of a Gaussian mixture. The third level consists of the outputs: the
relative closing prices, defined as the percent change in closing price relative to
the previous closing price.

Since many of these HMM models for stock returns focus on forecasting, we
decide to introduce a very simple HMM for performing inference about volatil-
ity changes. The idea of using HMM for volaility analysis is not new: there
are a few existing papers on HMM-GARCH (generalized autoregressive condi-
tional heteroskedasticity) models for volatility forecasts (for example, Zhuang
and Chan, 2004; Rossi and Gallo, 2005). However, these models are often too
complex to be interpreted properly. Our model allows simple and natural in-
terpretations yet provides important insight into the heteroskedastic nature of
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stock returns. It provides a solid foundation for further study of the volatility
changes.

Spectral learning methods have recently gained excitement in the machine
learning community. Hsu et al. (2012) introduces a spectral algorithm for
learning HMMs. The usual EM approach for learning HMM tends to suffer
from local optima issues and is often considered as computationally hard. The
algorithm proposed by Hsu et al. can be proven to be efficient and correct. In
our paper, we use the spectral algorithm to perform stock returns forecasting.

2 Volatility Analysis

Let {Pt}Tt=1 is the price of a certain stock from t = 1 to t = T . The geometric
brownian motion (GBM) model for stock prices suggests that

dPt = µPtdt+ σPtdWt,

where {Wt} is a standard Brownian motion, and µ and σ are unknown constants
governing the drift and the volatility of the prices, respectively. Rearranging
the term and setting dt = 1, dPt = Pt+1−Pt, and dWt = Wt+1−Wt, we obtain
the following (approximate) relationship:

Pt+1 − Pt

Pt
= µ+ σ(Wt+1 −Wt).

If this relationship is indeed true, the price returns Pt+1−Pt

Pt
should follow

a white noise process1 plus a certain constant. Based on the histograms and
ACF plot shown in Figures 3 and 4, it is tempting to conclude that white noise
processes are appropriate models. However, we suspect that the volatility of
stock returns is non-constant. This motivates our model for volatility analysis.

2.1 Model Specification
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Figure 1: An HMM for centered returns. Each of the hidden states takes values
in {1, ...,M}. Each of the emission probabilities is based on a mean zero Normal
distribution with variance depending on the corresponding hidden state qt.

Our objective is to study the price return process {rt}Tt=2, where rt is the
rate of returns:

rt =
Pt − Pt−1

Pt−1
.

1A time series {εt}Tt=1 is a white noise process if ε1, ..., εT are i.i.d. N(0, σ2).
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For simplicity, each of the rate of returns is computed over a 10-day period (each
unit time is equal to 10 days: t− (t− 1) = 10 trading days).

We propose the following model for rt:

rt = µ+ yt, t = 1, ...T,

where µ ∈ R is an unknown parameter and {yt}Tt=1 follows a hidden Markov
process specified by Figure 1:

1. number of states: M ≥ 2

2. number of observations: T

3. hidden states: {qt}Tt=1

4. observations: {yt}Tt=1, where yt|qt ∼ N(0, σ2
qt)

5. probability distribution of q1: π = {π1, ..., πM}, where
∑M

i=1 πi = 1, πi ≥ 0
for all i = 1, ...,M , and πi = P(q1 = i).

6. transition matrix: A ∈ [0, 1]M×M with A = (aij) and aij = P(qt+1 =
j|qt = i) (we assume that {qt}Tt=1 is a homogeneous Markov chain)

.
The qt’s represents the “volatility stages” in which the stock is undergoing.

To see why, note that qt has a direct relationship with the variance of yt, which
serves as a natural proxy for the volatility of the stock returns. There are three
interesting quantities in this model:

1. σ2
1 , ..., σ

2
M : Assume that the σ2

i ’s reflect the volatility of a particular stock.
Are these values small or big? Are they of similar magnitudes? How are
they vary for different stocks?

2. M : How many volatility stages does a particular stock possess? Small-
cap stocks tend to be more volatile than large-cap stocks, so do small-cap
stocks have more volatility stages, or is this volatility behavior already
captured by the magnitudes of the σi’s?

3. A: The ith diagonal element of A, aii, measures the “stickiness” of the
ith volatility stage. If aii is close to 1, it means that the stock is likely to
be “stuck” in the ith volatility stage once it enters the ith stage.

To estimate µ, a natural estimator is the method of moments estimator, the
arithmetic average:

µ̂ =
1

T

T∑
t=1

rt =: r̄.

To estimate the stochastic component yt, we use the centered return, ỹt :=
rt − r̄.

We estimate all the model parameter using the Baum-Welch algorithm. To
find the most likely sequence of the hidden states, we use the Viterbi algorithm
based on the estimated model parameters obtained from Baum-Welch.
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Figure 2: A plot of the BICs versus different numbers of states for AMZN and
PLNR. Each of the filled points indicates the lowest BIC for the corresponding
stock.

2.2 Results

We first study Amazon (AMZN), a stock which is considered as a “mega-cap”
stock (a stock with market capitalization over $200 billion). We study its ad-
justed close prices from January 3, 2007 to November 24, 2015, and choose the
number of states M based on BICs (Bayesian Information Criterion), which is
defined as

BIC = −2 log likelihood + p log n,

where p is the number of estimated parameters in the model and n is the number
of observations. For the proposed HMM, n = T and the number of estimated
parameters is computed as follows:

p = # of parameters estimated for π + # of parameters estimated for A

+ # of parameters estimated for σ2
1 , ..., σ

2
M

= (M − 1) +M(M − 1) +M

= M2 +M − 1.

We would like to choose a model with the smallest BICs. Since the HMM
model with M = 2 has the smallest BICs, we continue our analysis with M = 2
(Figure 2).

As shown in Figure 3, the centered returns for AMZN resembles a bell-shaped
distribution, consistent with the choice of mean zero Gaussian emission probabil-
ity. The ACF plot shows that the autocorrelations are very weak, which is con-
sistent with the HMM having no arrows among the observations yt themselves.
The bottom right panel shows that plot of the volatility stages (VSs) based on
the most likely sequence of hidden states. VS 1 corresponds to σ2

1 = 0.003758
(σ1 = 0.061) and VS 2 corresponds to σ2

2 = 0.027972 (σ2 = 0.167). It seems
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Figure 3: A 2× 2 panel plot of the stock AMZN. Top left: A histogram of the
centered returns for AMZN. Top right: An ACF (autocorrelation function) plot
of the centered returns. Bottom left: A line plot of the adjusted price time
series. Bottom right: A plot of the volatility stages.

that VS2 (high volatility) is ephemeral relative to VS1 (low volatility), as the
volatility plot stays flat in VS 1 most of the time, and it has occasional abrupt
jump to VS 2 and immediate return to VS 1. We can also deduce this behavior
based on the estimated transition matrix Â:

Â =

[
0.917 0.083
0.654 0.346

]
.

Note that the estimated probability of going from VS 2 to VS 1 â21 is greater
than 60%, indicating there is a high probability of returning to VS 1 if the stock
AMZN is currently in VS 2, based on the HMM model.

To make comparison with AMZN, we fit our HMM model to Planar Systems,
Inc. (PLNR), a small-cap stock with market capitalization around $150 million,
over the same time period. Based on the BICs, we find that the optimal number
of states is 3 (Figure 2). The three volatility stages corresponds to σ2

1 = 0.005697
(σ1 = 0.075), σ2

2 = 0.046706 (σ2 = 0.216), and σ2
3 = 0.271467 (σ3 = 0.521).

The estimated transition matrix Â for PLNR is

Â =

 0.939 1.36× 10−2 4.76× 10−2

1.60× 10−31 0.946 5.36× 10−2

1.00 5.78× 10−10 2.00× 10−29

 .
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Figure 4: A 2 × 2 panel plot of the stock PLNR. Note that the histogram of
the centered returns is approximated bell-shaped and the ACF plot shows that
almost all of the autocorrelations are insignificant.

The entry â31 = 1 indicates that we are almost sure that the stock will
return to VS1 (low volatility) after it enters VS3 (very high volatility). Both
â11 and â22 are very close to 1, which indicates that the lower volatility regimes
are “sticky”.

With the specific examples of AMZN and PLNR in mind, we can turn to
a more general analysis of large-cap to mega-cap stocks and small-cap stocks.
Table 1 shows the 10 large-cap to mega-cap stocks and the 10 small-cap stocks
selected for the analysis.

Figure 5 shows that σi’s versus the volatility stages for the 20 stocks. The
numbers of VSs are chosen such that the BICs are minimized. We find that
most of the selected stocks, regardless of whether the stocks are small-cap or
large-cap, have only 2 volatility stages (high and low) in our model. To our
surprise, quite a few small-cap stocks and a few large-cap stocks possess similar
σ̂1 and σ̂2, as shown in the substantial overlap among red and blue lines.

We remark that the model is best suited for the purpose of volatility analysis
and not for the purpose of forecasting. We use the proposed HMM model to
forecast the returns from 2015-07-20 to 2015-11-24. Figure 6 shows that the
predicted returns does not capture the behavior of the actual returns very well.
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Category Stocks
Amazon.com, Inc. (AMZN),

Apple Inc. (AAPL),
Microsoft Corporation (MSFT),

Exxon Mobil Corporation (XOM),
Large-cap/Mega-cap AT&T Inc. (T),

Johnson & Johnson (JNJ)
Wells Fargo & Co (WFC),

General Electric (GE),
Chevron (CVX),

Wal-Mart Stores, Inc. (WMT)
Planar Systems, Inc. (PLNR),

Harsco Corporation (HSC),
Trex Company, Inc. (TREX),

Abercrombie & Fitch Co. (ANF),
Small-cap Alaska Air Group, Inc. (ALK),

United Bancorp, Inc. (UBCP)
Citizens Holding Company (CIZN),

Kentucky First Federal Bancorp (KFFB)
Dominion Resources Black Warrior Trust (DOM),

CSP Inc. (CSPI)

Table 1: 10 Large-mega cap stocks and 10 small-cap stocks.

Figure 5: A plot of σi’s versus the volatility stages for various large to mega cap
stocks and small-cap stocks. For each stock, the numbers of volatility stages is
chosen to minimize the BIC. The plot shows that most of the stocks have only
two volatility stages.

7



Figure 6: Predicted returns versus actual returns for AMZN from 2015-07-20 to
2015-11-24.

3 A Spectral HMM for stock returns forecasting

Here, we implement an alternative HMM parameter estimation method using
the method of moments. In the HMM setting, we use a spectral decomposition
technique to carry out this approach. This technique is fairly new, emerging
recently within the past five years.

In particular, we analyze a spectral algorithm proposed by [Hsu et al. 2012]
and assess how well it predicts stock returns. This method serves as a dual to
the first model as it relies solely on observable quantities and therefore can be
used for time series forecasting. To our knowledge, this is the first time spectral
HMM methods have been used for predicting stock returns, but they have been
applied to other datasets in the past.

3.1 Model Specification

The model details covered here are taken from the paper A Spectral Algorithm
for Learning Hidden Markov Models [Hsu et al. 2012].

In this setting, we assume our transition and emission matrices are invertible
and our initial state distribution is strictly positive. Although we don’t work
with these explicitly in the spectral setting, those conditions are necessary for
HMMs to have a parametrization depending only on observable quantities.

For clarity, let [n] = {1, . . . , n} be the set of observations and xt represent
the observation at timestep t.

We define our HMM in the following way [Hsu et al. 2012]:

1. [P1]i = Pr[x1 = i]

2. [P2,1]ij = Pr[x2 = i, x1 = j]

3. [P3,x,1]ij = Pr[x3 = i, x2 = x, x1 = 1] ∀x ∈ [n].

8



P1 ∈ Rn is a vector while P2,1 ∈ Rn×n and P3,x,1 ∈ Rn×n ∀x ∈ [n] are
matrices. We can treat these three quantities as moment matrices for the first,
second, and third moments.

The algorithm we implement takes in the number of hidden states and the
sample size as parameters.

Algorithm LearnHMM(m,N) [Hsu et al. 2012]:
Inputs: m-number of states, N -sample size
Returns: HMM model parametrized by {b̂1, ˆb∞, B̂x ∀x ∈ [n]}

1. Sample N observation triples (x1, x2, x3) from the HMM to form empirical
estimates P̂1, P̂2,1, P̂3,x,1 ∀x ∈ [n] of P1, P2,1, P3,x,1 ∀x ∈ [n].

2. Compute the SVD of P̂2,1, and let Û be the matrix of left singular vectors
corresponding to the m largest singular values.

3. Compute model parameters b̂1, ˆb∞, B̂x ∀x ∈ [n].

(a) b̂1 = ÛT P̂1,

(b) ˆb∞ = (P̂T
2,1Û)+P̂1,

(c) B̂x = ÛT P̂3,x,1(ÛT P̂2,1)+

The model parameters can be used to predict the probability of a sequence of
observations and the conditional probability of xt given x1, . . . , xt−1 as follows.

p̂(x1, . . . , xt) = b̂T∞B̂xt
· · · B̂x1

b̂1

p̂(xt|x1, . . . , xt−1) =
b̂T∞B̂xt

b̂t∑
x b̂

T
∞B̂xb̂t

.

b̂t+1 =
B̂xt

b̂t

b̂T∞B̂xt
b̂t

3.2 Experiment Design

We use the LearnHMM algorithm to forecast returns on the S&P 500 index
returns for a five year period from 11-23-2010 to 11-23-2015 with each time step
being a 10-day interval. Training sets were created from the first 40, 50, 60, and
80 timesteps (or 400, 500, 600, and 800 days) and then used to predict the rest
of the index returns.

We transform our observation space to a discrete setting because otherwise
the spectral algorithm will not apply–the observation transition matrices only
make sense in a discrete setting. We do this via binning — identifying each data
point with a quantile corresponding to the observation state xt. For example, if
our price change at the second timestep is in the third quantile, we say x2 = 3.
We used 6 observation states (quantiles). The idea was that we could rank our
returns by ’very high’, ’high’, ’average/slightly above average’, ’average/slightly
below average’, ’low’, and ’very low’.

For forecasting, we determine x̂t+1 by taking the maximizing value of the
conditional probability given the past observations. In succinct form,

x̂t+1 = max
xt+1

p̂(xt+1|x1, . . . , xt).
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Figure 7: Accuracy of forecasting dependent on number of hidden states when
training on 400 days (40 timesteps).

Then using this, we can calculate bt+1 and keep alternating between the two.

3.3 Results

Noticeably, the spectral HMM fared poorly for predicting returns in the S&P
500. This section will discuss the algorithm’s empirical performance in more
detail.

First, the forecasts, regardless of the number of hidden states and training
dataset size used, would cycle through sets of states.

The plots shown in Figures 7 and 8 focus on a window of 20 timesteps
corresponding to days 700 to 899.

The mean squared errors between our predicted observations and actual
observations were computed for the different training sets and numbers of hidden
states. We could have used our baseline prediction of 3 or 4 throughout and
outperformed the predictions from LearnHMM as seen in our tables 2 and 4. It
was interesting that the MSE was lower for smaller numbers of hidden states.
When there were only two hidden states, the mean square error was at its lowest.
When training on 600 days (60 timesteps), our LearnHMM for two hidden states
actually outperformed our baseline with respect to the mean square error as seen
in 5.

However, the cycling through states is not the only flaw with the LearnHMM
algorithm. We saw while calculating likelihoods (joint probabilities) for different
sets of observations that there were negative values. The table 6 provides more
detail. On further inspection, there are also stability issues stemming from
the SVD calculation of P̂2,1. As the sample size increases, the SVD does not
converge. This was why our joint probability fluctuated wildly with respect to
the sample size–the SVD was extremely sensitive to small perturbations in P̂2,1.

Originally, we thought there was a bug in our code until we saw these stability
issues were discussed in a recent paper A Sober Look at Spectral Learning [Zhao
and Poupart, 2014].
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Figure 8: Accuracy of forecasting dependent on training dataset.

Number of hidden states MSE
2 5.4588
3 5.7647
4 5.6235
5 6.2118
6 6.7647

Table 2: Our mean squared error between predicted and actual observations
varying by the number of hidden states hyperparameter used in our LearnHMM
algorithm. Here we train on 400 days (40 timesteps).

Training Size MSE
400 6.7647
500 6.4667
600 4.646
800 6.800

Table 3: Our mean squared error between predicted and actual observations
varying by the training data size used for forecasting. Here we assume 6 hidden
states and 6 observation states.

Predicted State MSE
3 3.192
4 3.184

Table 4: Our mean squared error between predicted and actual observations
given we constantly predicted an observed state of 3 or 4.
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Number of hidden states MSE
2 2.7846
3 5.4615
4 4.1231
5 5.9385
6 5.8000

Table 5: Our mean squared error between predicted and actual observations
varying by the number of hidden states hyperparameter used in our LearnHMM
algorithm. Here we train on 600 days (60 timesteps).

Sample Size Probability
350 2.40446414856475e-45
360 -2.37288148310411e-44
370 7.11145514863548e-44
380 -2.27827302121708e-44
390 -5.78094561020260e-44
400 -2.22816732532757e-42
410 1.54518332772887e-43
420 2.63872954946976e-40
430 1.98182048452036e-39
440 -3.24626501478278e-40
450 -6.25464466480119e-39
460 5.27309019205740e-37
470 -9.22984754857112e-38
480 6.37774305996794e-39
490 1.67453020299202e-37
500 2.23366415402976e-37

Table 6: Probabilities of observation data occurring based on sample sizes given
they are taken from the estimated HMM.
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Negative joint probabilities for some of our observed sequences also caused
our conditional probabilities p(xt|x1, . . . , xt−1) to take on negative values some-
times as well. However, we still went ahead and still did forecasting for xt outside
the training set by a maximum likelihood approach as detailed in section 3.2,
because we did not know of an alternative.

4 Conclusion

Based on our first HMM model, most stocks have two volatility stages (low
volatility and high volatility). In our specific case study of AMZN and PLNR, we
find that high-volatility stage has a tendency to be transient and low-volatility
stage has a tendency to be stable. A potential explanation is that the sudden
high-volatility stages result from important news or announcements about the
stocks and they catch the attention of the traders, leading the traders to trade
aggressively. Surprisingly, the large/mega-cap stocks and the small-cap stocks
have similar volatility. One would normally expect that large-cap stocks have
smaller volatility compared to the small-cap stocks. Finally, a potential exten-
sion of the HMM model is to introduce two layers of hidden states: momentum
and volatility. This extension will allow for more complicated interactions be-
tween volume and volatility.

An approach using method of moments (spectral HMM) did not fare very
well, even when changing on the number of states. Noticeably, the predictions
were always periodic in nature, but with different patterns when changing the
number of hidden states. Originally, when looking at a smaller time interval, we
thought that these predictions can give a general idea of the movement ahead
of time, but upon further inspection with larger intervals and seeing periodicity,
we learned this wasn’t the case. While calculating the predicted likelihood of
observed stock returns, we discovered negative values. Also there were stability
issues using the spectral algorithm as it didn’t converge after a high number of
samples. After noticing these issues, we conclude the spectral HMM algorithm
is too unstable for use in application. This was also discussed in a paper (Zhao
and Poupart, 2014) highlighting the flaws of spectral HMM, but we noticed this
issue independently.
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